面向边界框回归对于定向对象检测至关重要。但是,基于回归的方法通常会遭受边界问题以及损失和评估指标之间的不一致性。在本文中,提出了一个调制的卡尔曼·伊奥(Kalman iou)损失,命名为Mkiou。为了避免边界问题,我们将定向边界框转换为高斯分布,然后使用卡尔曼过滤器近似交叉区域。但是,计算的交叉区域和实际交叉区域之间存在显着差异。因此,我们提出了一个调制因子,以调节角度偏差和宽度高度偏移对损失变化的敏感性,从而使损失与评估度量更一致。此外,高斯建模方法避免了边界问题,但同时引起方形对象的角度混乱。因此,提出了高斯角损失(GA损耗),以通过添加平方目标的校正损失来解决此问题。提出的GA损失可以很容易地扩展到其他基于高斯的方法。在三个公开可用的空中图像数据集(DOTA,UCAS-AOD和HRSC2016)上进行了实验,显示了该方法的有效性。
translated by 谷歌翻译
定向对象检测是在空中图像中的具有挑战性的任务,因为航空图像中的物体以任意的方向显示并且经常密集包装。主流探测器使用五个参数或八个主角表示描述了旋转对象,这遭受了定向对象定义的表示模糊性。在本文中,我们提出了一种基于平行四边形的面积比的新型表示方法,称为ARP。具体地,ARP回归定向对象的最小边界矩形和三个面积比。三个面积比包括指向物体与最小的外接矩形的面积比和两个平行四边形到最小的矩形。它简化了偏移学习,消除了面向对象的角度周期性或标签点序列的问题。为了进一步弥补近横向物体的混淆问题,采用对象和其最小的外缘矩形的面积比来指导每个物体的水平或定向检测的选择。此外,使用水平边界盒和三个面积比的旋转高效交叉点(R-EIOU)丢失和三个面积比旨在优化用于旋转对象的边界盒回归。遥感数据集的实验结果,包括HRSC2016,DOTA和UCAS-AOD,表明我们的方法达到了卓越的检测性能,而不是许多最先进的方法。
translated by 谷歌翻译
同态加密(HE),允许对加密数据(Ciphertext)进行计算,而无需首先解密,因此可以实现对云中隐私性的应用程序的安全性缓慢的卷积神经网络(CNN)推断。为了减少推理潜伏期,一种方法是将多个消息打包到单个密文中,以减少密文的数量并支持同型多态多重蓄能(HMA)操作的大量并行性。尽管HECNN的推断速度更快,但主流包装方案密集的包装(密度)和卷积包装(Convpack)仍将昂贵的旋转开销引入了昂贵的旋转开销,这延长了HECNN的推断潜伏期,以实现更深和更广泛的CNN体​​系结构。在本文中,我们提出了一种名为FFCONV的低级分解方法,该方法专门用于有效的密文填料,用于减少旋转台面和HMA操作。 FFCONV近似于低级分解卷积的A D X D卷积层,其中D X D低率卷积具有较少的通道,然后是1 x 1卷积以恢复通道。 D X D低级别卷积带有密度,导致旋转操作显着降低,而1 x 1卷积的旋转开销接近零。据我们所知,FFCONV是能够同时减少densepack和Convpack产生的旋转头顶的第一项工作,而无需将其他特殊块引入HECNN推理管道。与先前的Art Lola和Falcon相比,我们的方法分别将推理潜伏期降低了88%和21%,其精度在MNIST和CIFAR-10上具有可比的精度。
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
This paper concerns realizing highly efficient information-theoretic robot exploration with desired performance in complex scenes. We build a continuous lightweight inference model to predict the mutual information (MI) and the associated prediction confidence of the robot's candidate actions which have not been evaluated explicitly. This allows the decision-making stage in robot exploration to run with a logarithmic complexity approximately, this will also benefit online exploration in large unstructured, and cluttered places that need more spatial samples to assess and decide. We also develop an objective function to balance the local optimal action with the highest MI value and the global choice with high prediction variance. Extensive numerical and dataset simulations show the desired efficiency of our proposed method without losing exploration performance in different environments. We also provide our open-source implementation codes released on GitHub for the robot community.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Reduced system dependability and higher maintenance costs may be the consequence of poor electric power quality, which can disturb normal equipment performance, speed up aging, and even cause outright failures. This study implements and tests a prototype of an Online Sequential Extreme Learning Machine (OS-ELM) classifier based on wavelets for detecting power quality problems under transient conditions. In order to create the classifier, the OSELM-network model and the discrete wavelet transform (DWT) method are combined. First, discrete wavelet transform (DWT) multi-resolution analysis (MRA) was used to extract characteristics of the distorted signal at various resolutions. The OSELM then sorts the retrieved data by transient duration and energy features to determine the kind of disturbance. The suggested approach requires less memory space and processing time since it can minimize a large quantity of the distorted signal's characteristics without changing the signal's original quality. Several types of transient events were used to demonstrate the classifier's ability to detect and categorize various types of power disturbances, including sags, swells, momentary interruptions, oscillatory transients, harmonics, notches, spikes, flickers, sag swell, sag mi, sag harm, swell trans, sag spike, and swell spike.
translated by 谷歌翻译
Morality in dialogue systems has raised great attention in research recently. A moral dialogue system could better connect users and enhance conversation engagement by gaining users' trust. In this paper, we propose a framework, MoralDial to train and evaluate moral dialogue systems. In our framework, we first explore the communication mechanisms of morality and resolve expressed morality into four sub-modules. The sub-modules indicate the roadmap for building a moral dialogue system. Based on that, we design a simple yet effective method: constructing moral discussions from Rules of Thumb (RoTs) between simulated specific users and the dialogue system. The constructed discussion consists of expressing, explaining, and revising the moral views in dialogue exchanges, which makes conversational models learn morality well in a natural manner. Furthermore, we propose a novel evaluation method in the framework. We evaluate the multiple aspects of morality by judging the relation between dialogue responses and RoTs in discussions, where the multifaceted nature of morality is particularly considered. Automatic and manual experiments demonstrate that our framework is promising to train and evaluate moral dialogue systems.
translated by 谷歌翻译
This thesis introduces quantum natural language processing (QNLP) models based on a simple yet powerful analogy between computational linguistics and quantum mechanics: grammar as entanglement. The grammatical structure of text and sentences connects the meaning of words in the same way that entanglement structure connects the states of quantum systems. Category theory allows to make this language-to-qubit analogy formal: it is a monoidal functor from grammar to vector spaces. We turn this abstract analogy into a concrete algorithm that translates the grammatical structure onto the architecture of parameterised quantum circuits. We then use a hybrid classical-quantum algorithm to train the model so that evaluating the circuits computes the meaning of sentences in data-driven tasks. The implementation of QNLP models motivated the development of DisCoPy (Distributional Compositional Python), the toolkit for applied category theory of which the first chapter gives a comprehensive overview. String diagrams are the core data structure of DisCoPy, they allow to reason about computation at a high level of abstraction. We show how they can encode both grammatical structures and quantum circuits, but also logical formulae, neural networks or arbitrary Python code. Monoidal functors allow to translate these abstract diagrams into concrete computation, interfacing with optimised task-specific libraries. The second chapter uses DisCopy to implement QNLP models as parameterised functors from grammar to quantum circuits. It gives a first proof-of-concept for the more general concept of functorial learning: generalising machine learning from functions to functors by learning from diagram-like data. In order to learn optimal functor parameters via gradient descent, we introduce the notion of diagrammatic differentiation: a graphical calculus for computing the gradients of parameterised diagrams.
translated by 谷歌翻译
The key to electroencephalography (EEG)-based brain-computer interface (BCI) lies in neural decoding, and its accuracy can be improved by using hybrid BCI paradigms, that is, fusing multiple paradigms. However, hybrid BCIs usually require separate processing processes for EEG signals in each paradigm, which greatly reduces the efficiency of EEG feature extraction and the generalizability of the model. Here, we propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface. It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms. TSCNN automatically learns to extract EEG features in the two paradigms in the training process, and improves the decoding accuracy by 25.4% compared with the MI mode, and 2.6% compared with SSVEP mode in the test data. Moreover, the versatility of TSCNN is verified as it provides considerable performance in both single-mode (70.2% for MI, 93.0% for SSVEP) and hybrid-mode scenarios (95.6% for MI-SSVEP hybrid). Our work will facilitate the real-world applications of EEG-based BCI systems.
translated by 谷歌翻译